10 research outputs found

    Secure Distributed Dynamic State Estimation in Wide-Area Smart Grids

    Full text link
    Smart grid is a large complex network with a myriad of vulnerabilities, usually operated in adversarial settings and regulated based on estimated system states. In this study, we propose a novel highly secure distributed dynamic state estimation mechanism for wide-area (multi-area) smart grids, composed of geographically separated subregions, each supervised by a local control center. We firstly propose a distributed state estimator assuming regular system operation, that achieves near-optimal performance based on the local Kalman filters and with the exchange of necessary information between local centers. To enhance the security, we further propose to (i) protect the network database and the network communication channels against attacks and data manipulations via a blockchain (BC)-based system design, where the BC operates on the peer-to-peer network of local centers, (ii) locally detect the measurement anomalies in real-time to eliminate their effects on the state estimation process, and (iii) detect misbehaving (hacked/faulty) local centers in real-time via a distributed trust management scheme over the network. We provide theoretical guarantees regarding the false alarm rates of the proposed detection schemes, where the false alarms can be easily controlled. Numerical studies illustrate that the proposed mechanism offers reliable state estimation under regular system operation, timely and accurate detection of anomalies, and good state recovery performance in case of anomalies

    Telsiz konum belirleme sistemleri için karıştırıcı yerleştirme algoritmaları

    No full text
    Cataloged from PDF version of article.Thesis (M.S.): Bilkent University, Department of Electrical and Electronics Engineering, İhsan Doğramacı Bilkent University, 2016.Includes bibliographical references (leaves 56-60).The optimal jammer placement problem is proposed and analyzed for wireless localization systems. In particular, the optimal location of a jammer node is obtained by maximizing the minimum of the Cram´er-Rao lower bounds (CRLBs) for a number of target nodes under location related constraints for the jammer node. For scenarios with more than two target nodes, theoretical results are derived to specify conditions under which the jammer node is located as close to a certain target node as possible, or the optimal location of the jammer node is determined by two of the target nodes. Also, explicit expressions are provided for the optimal location of the jammer node in the presence of two target nodes. In addition, in the absence of distance constraints for the jammer node, it is proved, for scenarios with more than two target nodes, that the optimal jammer location lies on the convex hull formed by the locations of the target nodes and is determined by two or three of the target nodes, which have equalized CRLBs. Numerical examples are presented to provide illustrations of the theoretical results in different scenarios. Furthermore, an iterative algorithm is proposed for numerically determining the optimal jammer location. At each iteration of the algorithm, the jammer node is moved one step along a straight line with the purpose of increasing the CRLB(s) of the target node(s) with the minimum CRLB in the system. It is shown that the algorithm converges almost surely to the optimal jammer location under certain conditions for an infinitesimally small step size in the absence of location constraints for the jammer node. Simulations illustrate the effectiveness of the proposed algorithm in finding the optimal jammer location and its superiority in terms of the computational complexity compared to the exhaustive search over all feasible locations.by Mehmet Necip Kurt.M.S

    Distributed Quickest Detection of Cyber-Attacks in Smart Grid

    No full text

    Real-Time Detection of Hybrid and Stealthy Cyber-Attacks in Smart Grid

    No full text

    Poster presentations.

    No full text
    corecore